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INTRODUCTION 

The inclusion of the effects of inelastic behavior has been a 
fairly recent development in the analysis and design of structures. It 
has been a most welcome development in that inelasticity is a more 
realistic assessment of real material properties; on the other hand, it 
also introduces a much more complex situation in terms of analysis and 
the application of the analysis to the development of realistic design 
procedures. 

The development of methods of plastic design and limit design 
is fairly advanced for static structures but the application of such 
procedures to dynamic problems is at a more primitive stage of develop- 
ment. Just as inelasticity complicates static analysis, the considera- 
tion of the effect of inelasticity in the dynamic state creates a 
complexity of a higher order of magnitude. 

It is the purpose of this lecture to explore this field and to 
observe some of the more pertinent developments without delving into the 
mathematical de tai ls The various types of inelasticity will be intro- 
duced and the more common types discussed in some detail. Mathematical 
models of the most common structures will be described, making us of the 
basic inelastic properties of the structural components. The basic 
characteristics of a number of the methods of analysis will be described 
in order to illustrate the varied approaches which can be used to solve 
the same basic problem. A description of the general effects of 
inelasticity will be given based upon the observations of a number of 
investigators in this field. An alphabetical list of references will 
enable the interested engineer to examine in detail any of the material 
presented in this lecture by referring to the appropriate publication. 

TYPES OF INELASTICITY 

As a review of the basic strength of materials, consider first 
the stress-strain diagram for mild steel as shown in Figure 1. Figure 
1(a) illustrates the stress-strain curve to fai lure , with the appropriate 
portions labelled elastic, plastic and strain-hardening. Figure 1 (b) 
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shows the details near the yield-point. In particular, one should note 
that the yield-point is defined as the stress at which plastic flow 
begins and full rebound is no longer possible. Another point on the 
curve, usually defined as the proportional limit, is the stress after 
which stress is no longer linearly proportional to strain. It is often 
said that the stress-strain curve is non-linear after this point 
although it remains elastic for a short portion of the curve above this 
point. It is important to realize the difference between the onset of 
non-linearity and the onset of inelasticity, although they are often at 
or near the same position on the stress-strain curve. 

After this review, it is now possible to define the typical types 
of inealsticity used in dynamic response analysis. Figure 2 shows the 
common types, as well as the elastic case. All types are of necessity 
somewhat idealized but compared to the assumption of purely elastic 
behavior, they are an improvement in the representation of the physical 
material properties. Figure 2 (a) illustrates the linear elastic stress-
strain relationship, which is the common basis for almost all structural 
analysis and for the theory of elasticity. Figure 2 (b) illustrates the 
most common inelastic idealization, the so-called elastic-perfectly plas- 
tic material. It is seen that this is reasonably representative of mild 
steel for a much larger range of strains than the normal elastic represen- 
tation. Figure 2(c) shows a modification of this in which the elastic 
portion of the curve is neglected and which is known as a rigid-plastic 
material. This idealization is often used to assess the effects of very 
large plastic deformation, for which case the elastic portion of the curve 
is of little consequence. Other materials are often best described by 
the elastic-plastic strain hardening model of Figure 2 (d). Many other 
idealizations are possible but these are the common types used to repre- 
sent structural elements. Figures 2 (e) and (f) illustrate two types of 
chazkacteristics which are possible for non-structural components of 
framed buildings. The inclusion of such elements when calculating the 
resistance of a frame depends upon the construction of the individual 
building; discussions of this matter are included in several of the papers 
in the list of references (see references B10, B11, B12, B13 and N1). 

For members subjected to axial loads, the stress-strain curves 
are directly proportional to the load-deformation curves. For members 
subjected to bending, the deformation characteristics of an element are 
expressed by the moment-curvature relationship, which itself is a func-
tion of the shape of the member as well as of the stress-strain charac- 
teristics of the material. Figure 3 (a) illustrates typical curves 
computed for elastic-perfectly plastic materials. Figure 3 (b) shows 
the idealizations of these characteristics which are commonly used in 
analysis. The so-called perfectly plastic case (in which the moment 
after yield is considered constant) is the usual assumption. Note 
that this implies the use of thin-walled members such as I beams or wide 
glange beams. If solid members are being used, care must be taken to 
use the appropriate bilinear approximation. 
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Consider a single degree-of-freedom system having the elastic-
perfectly plastic force-deformation characteristic shown in Figure 4. 
The spring deformation at yield is denoted by Uy and the maximum deforma-
tion attained during any dynamic load application is denoted by Um. A 

measure of the amount of inelastic deformation is given by the ductility 
factor 1.1 which is defined as: 

ductility factor y = um 
Uy 

Another measure of inelastic action is given by the reduction factor, 
which is defined as the ratio of the yield deformation Uy over the 
peak elastic deformation Ue . The ductility factor times the reduction 
factor gives the ratio of maximum inelastic deformation to the maximum 
elastic deformation. These measures will be referred to later in the 
lecture and are used extensively when describing the effects of 
inelasticity. 

MATHEMATICAL MODELS USED IN ANALYSIS 

Consider first a simple single story rigid frame as shown in 
Figure 5 (a). Dynamically, this is usually considered as a single 
degree-of-freedom system with all the mass considered to be concentrated 
at the floor. When determining the structural resistance of this frame, 
two possible mathematical models may be used. Figure 5 (b) shows the 
most common, in which the floor is considered to be rigid and having 
motion parallel to the foundation. The supporting members are symmetri- 
cal so that all four plastic hinges will form at the same time. This 
model is then identical to the single mass oscillator shown in Figure 4, 
with the equivalent spring force being the shear in the columns. A 
second, more general model is useful when considering non-symmetrical 
situations and the inclusion of the effects of static vertical floor 
loadings on the dynamic response. This model is shown in Figure 5 (c) 
and permits plastic hinges to form in any order as the dynamic response 
dictates. The columns may have different stiffnesses and yield moments; 
hinges are also allowed to form under any concentrated vertical static 
loads if the beam yield moment is reached at these points during the 
dynamic response. This second model is also a single degree-of-freedom 
system but the equivalent spring force in this case is a piece-wise 
linear curve (as shown) in which the actual curse is a function of the 
dynamic and static loading in addition to the properties of the basic 
frame. Viscous damping can be included in both models if desired. 

The models used for multi-story framed structures are in most 
cases extensions of the two models used for the single storey frame. 
The simplest model is the so-called shear building in which all floor 
systems are assumed rigid (insofar as dynamic motion is concerned). All 
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floors move parallel to each other so aonly inter-floor shear need be 
considered. This inter-floor shear is assumed to have an elastic- 
perfectly plastic force-deformation relationship. Ordinarily, the 
story-to-story yield variation is assumed to be proportional to an inverted 
triangle. Other variations are also possible, (See references B10 and 
Pl.) 

The next mathematical model is the frame in which all members are 
flexible and plastic hinges are allowed to form both in columns and beams. 
This model is generally known as the elasto-plastic rigid frame. Some 
methods of analysis employing this model limit hinge formation to certain 
pre-designated pairs; whereas, others allow more complete freedom in pat-
terns of hinge formation. 

Another mathematical model employs a combination of the elasto- 
plastic rigid frame and the shear-wall. The use of this or any other 
model is, of course, based on the physical characteristics of thebuilding 
being analyzed. One variation of this combination is the use of an 
elastic rigid frame in combination with an elastic-perfectly plastic shear- 
wall (see reference B6). Construction details will also dictate whether 
the resistance of non-structural elements should be included in the model; 
generally the inclusion of such resistance when computing the complete 
response characteristics is impractical. 

The choice of any particular mathematical model is dependent 
upon the purpose of the analysis, the characteristics of the basic struc- 
ture and the analytical technique being used. Analytical tech niques 
will be discussed later in this lecture. The present discussion is con- 
cerned with the complexity of the various models insofar as the determina-
tion of the structural resistance and the applicability to certain types 
of structures. 

It is evident that the shear-wall model is much simpler in con- 
cept than the elasto-plastic rigid frame. An analogy which is useful is 
the consideration of equivalent multiple mass and spring oscillators. 
The shear-wall model is analogous to a system in which any two adjacent 
masses are connected by only one spring. The resisting force at each 
mass is, therefore, only a function of the deformations of the two adjacent 
springs, By comparison the elasto-plastic rigid frame is analogous to a 
spring-mass system in which every mass is connected with every other mass 
by separate springs. In this case the resisting force at any mass is a 
function of the deformations of all the inter-connecting springs, i.e., a 
function of the displacements of all the other masses. Mathematically, the 
problem is the determination of the stiffness and flexibility matrices re-
lating the resisting forces to the storey displacements and vice versa. 
For the shear-wall these matrices consist of only the three central diago-
nals and the elements can be determined by one or two simple calculations. 
For the elasto-plastic frame, these matrices usually contain all non-zero 
elements which must be determined by applying advanced methods of struc- 
tural analysis. For elastic frames this analysis would only have to be 
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made at the beginning of each problem so that the additional complexity 
is not of too much concern. However, when the frame is elastic-plastic, 
this analysis must be made each time a hinge forms and this increases the 
complexity of the situation enormously. When yielding occurs in any 
storey of the shear-wall structure, the inter-floor shear remains constant 
and the change in the stiffness matrix occurs only in one or two elements. 
It is for this reason that the shear-wall model is used wherever possible 
and the elasto-plastic rigid frame is generally used only by researchers. 

The premise of the shear-wall model is that the floor systems 
are considered rigid compared to the flexible columns. This is usually 
valid in the cases where the floors are integral with the beam and girder 
systems and contribute to the strength of the frame whereas the wall 
systems are either panelled, hung or masonry and are not considered to 
significantly increase the column stiffnesses. Little investigation 
has been made into the validity of the shear-wall model in situations 
where the strength characteristics are not so clearly defined. Several 
investigators have included the non-structural resistance of masonry 
walls in determining the general effect on overall resistance. In cases 
of actual shear walls existing in buildings, the strength of the walls 
is included in calculating the properties of the shear wall, which is 
then combined with the structural frame in the determination of the 
overall resistance. 

METHODS OF ANALYSIS 

The basic problem in structural dynamics is to determine the 
response of the system to given dynamic loading (in this case, due to 
earthquake) or failing this to be able to estimate the maximum deforma- 
tions and hence the amount of damage to be expected. Previous lecturers 
have discussed the methods of analysis for elastic system and have shown 
that the method of modal analysis is perhaps the most useful° Because 
of the changing characteristics of the inelastic system, the method of 
modal analysis is usually not possible and most solutions are obtained 
by using some form of numerical integration of the equations of motion. 
It is the purpose of this section to discuss briefly some of the methods 
of analysis which have been used so that the engineer can have some idea 
of the different approaches which are availableo 

Go V. Berg (references B2, B5 and B6) has presented a method 
for the analysis of multi-storey e las to-p las tic rigid frames o The 
structural resistance is evaluated by using the elastic equations at 
each time interval and superimposing linear "corrector" solutions for 
each point at which a plastic hinge has formed. The plastic hinge 
rotations at each time interval are determined by an iteration to satisfy 
the prescribed constraints within specified limits. Both the Milne 
Predictor-Corrector and Runge-Kutta methods of numerical integration were 
used in this analysis. The linear "corrector" solutions are obtained 
by p=-calculation for all points at which plastic hinges are expected 
to form. 
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J. Ao Blume (references B10, Bll and B12) has presented a 
"Reserve Energy Technique" which is not a method of determining the com-
plete response of a structure but which does provide an excellent means 
of estimating maximum deformation and damage to be expected due to a 
given earthquake. The bases of this technique are as follows: 

(a) A consideration of the energy "balance including input 
energy loss, strain energy and energy "feed-back"o 

(b) A consideration of the force-deformation characteristics 
of the structure, the energy capacity under repeated 
excursions into the plastic range, and an estimate of 
the amount of energy fed back into the ground. 

(c) A consideration of the energy input based upon knowledge 
of the natural period, the elastic acceleration spectra 
for earthquakes of given intensity and the reduction 
factor to be applied when using elastic spectra for 
inelastic situations.  

The method of analysis is to estimate by trial and error the deformation 
at a position of energy balance. The evaluation of the structure is 
then made by means of a damage rating system based on the comparison of 
the energy balance deflection with the failure position, the no-damage 
position and the position of maximum permissible drift° A safety 
factor may be included in the calculations if desired. 

R. W. Clough (reference Cl) has described a method of analysis 
in which the moment-curvature characteristics for each member in the 
frame can be bilinear. The integration is done on a step-by-step basis 
with the assumption that the resistance function remains linear throughout 
each tine interval. Changes in resistance due to plastic deformation are 
computed at the end of each time interval and used for the succeeding 
interval. The numerical method is based on the assumption that the 
acceleration varies linearly during the interval of integration. 

A method of analysis for elasto-plastic rigid frames (references 
H2 and H3) developed by the author is based upon the extension of the 

conjugate beam concept to elastic-plastic analysis. Each plastic hinge 
rotation is represented by a concentrated force on the conjugate of the 
rigid frame. The stiffness and flexibility matrices are then evaluated 
for each set of circumstances as it arises in the dynamic response problem. 
The method of numerical integration is a single step procedure which 
assumes a linear variation of acceleration and velocity over the tine 
interval of integration, 

R. K. Wen (references W2 and 413) has presented a method for the 
analysis of rigid frames whose members have general inelastic moment- 
curvature characteristics. This method is based on a "lumped-mass, 
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lumped-flexibility" approach to determine the resistance of the frame at 
any position. A standard type of numerical integration was used. 

A large number of papers (including references B7, B114, H4, Kl, 
Pl, P2 and S3) have used the shear building as a mathematical model. 
The differences between the various approaches are primarily in the form 
of numerical integration and in the variation of the yield shear force 
along the height of the frame. G. N. Bycroft (reference BD+) describes 
an analysis using an analog computer to determine the response in which 
the elasto-plastic characteristic is provided by diode limited integra- 
tors. Several investigators (references K1 and S3) have used a 
bilinear form of shear force-deformation relationship, as shown in 
Figure 2 (d). 

A number of other variations of the above methods could be 
described, but these represent a cross-section of such approaches. B. 
consulting the appropriate reference publication, further information 
can be obtained on any particular method of analysis. It should be 
realized that computing the dynamic response of inelastic structural 
systems is a complex problem, regardless of the mathematical model or 
method of analysis to be used. This is why the determination of certain 
general characteristics of such systems is of such importance. The 
following section deals with such general characteristics. 

GENERAL OBSERVATIONS ON THE EFFECTS OF INELASTIC ACTION 

A large number of investigators have studied the behavior of 
particular inelastic structures when subjected to strong-motion earth- 
quakes. Most investigations have dealt with the beh avior of the single- 
storey shear frame model, i.e., a single mass oscillator. Such a system 
is simple enough so that the effects of parameters other than those 
related to inelastic behavior can often be eliminated. 

Figure 6, taken from reference B10, shows typical elastic and 
elastic-plastic response curves for a single storey frame subjected to 
earthquake ground motion. Figure 7 (from reference VI) shows a compari- 
son of the maximum relative displacements of elastic and elastic-plastic 
systems as a function of the natural period. Figures 8 and 9 (from 
reference VI) show the acceleration spectra for elastic and elastic-
plastic systems and illustrate the effects of both damping and plastic 
deformation. 

The figures referred to above illustrate typical response 
characteristics of simple systems subjected to strong-motion earthquakes. 
A number of observations can be made which are confirmed by the conclu- 
sions of many investigators. The most general conclusion is that the 
maximum dynamic elasto-plastic response of a structure decreases with a 
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decrease in yield strength, i.e., an increase in ductility factor, until 
this strength reaches some optimum value at which point a further 
decrease in strength results in an increase in dynamic response. This 
general observation is shared by references B3, B10, P1 and VI. The 
position of this optimum yield strength varies but it is generally 
agreed that this occurs for values of ductility factor from about 10 to 
20, Indications are that most structural configurations fabricated of 
ductile materials have a maximum useful ductility factor of about 8 (see 
reference B10); therefore, under most design conditions the effect of 
yielding in the practical range is to reduce total deformation. Further 
observations (see reference Al) have been made indicating that the above 
phenomenon is only generally true for a range of natural period above a 
mini turn which is usually around 1.0 seconds. That this is true can be 
seen by a close examination of Figure 7. 

Another general observation is that the effect of inelastic 
action on the maximum dynamic response is of the same order as the effect 
of viscous damping and both are roughly additive. The authors of 
references B6, B10, and P1 are in agreement on this point. An examina-
tion of Figures 8 and 9 shows that this effect is also true for the 
spectral acceleration. These figures also illustrate how the lateral 
design coefficient can be reduced by allowing a certain amount of plastic 
deformation. 

G. V. Berg, in reference B3, observes that the total input 
energy is generally reduced when yielding is permitted. This is in 
agreement with previous remarks regarding the decrease of maximum defor-
mation when yielding is permitted. 

Several detailed studies have been made of the dynamic response 
of multi-storey frames (see in particular references B6 and P1). A 
typical set of response curves for elastic and elastic-plastic cases are 
shown in Figures 10 and 11 (from reference P1). It is characteristic 
of the elastic-plastic response of such systems that the period of vibra-
tion remains about the same as for the response and that the vibration is 
essentially elastic about a moving equilibrium position which is con-
stantly shifting away from the zero position as inelastic deformation 
progresses. The sarre observation may be made about single degree-of- 
freedom systems, but the effect is less obvious in Figure 6. Another 
observation is that the maximum deformation (for the case shown in Figure 
11) is larger than the elastic deformation but that the amplitude of 
oscillation is much smaller. 

It has been the purpose of this section to describe some of the 
more general observations with the view of establishing some intuitive 
basis for judging the effects of inelastic behavior. This is especially 
valuable in cases where any type of detailed analytical investigation, 
i.e., computing probable response curves to prior earthquakes, is not 
possible. It should be mentioned that many of the observations are also 
valid for dynamic loadings other than those due to earthquakes, e.g., 
impulse and blast loading. 
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CONCLUSIONS 

The general purpose of this lecture has been to describe the 
nature of structural inelasticity, the resulting mathematical models, 
the methods of analysis and the qualitative effects which this inelas-
ticity can have on the response tharacteristi cs of structural systems. 
Due to the short time and space available, many of the details have had 
to be completely eliminated; however, the list of references which 
follow make it possible for these details to be obtained at the leisure 
of the reader. 
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Figure 2: Various types of Stress-Strain Relationship 
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A) Curves computed for various cross-sectional shapes 
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Figure 3: Moment-Curvature Relationships (for materials having elastic-
perfectly plastic stress-strain characteristics) 
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Figure 4: Single Mass Oscillator 
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Figure 5: Single Storey Rigid Frame 
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Figure 6 - reprinted from reference B10) 
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Figure 7 — reprinted from reference fl 

IV-21 



5.0 

4.0 

3.0 

C ›.% 
0 4... 

e a 2.0 
s2  
(i) 

‘46  

0 

C3"- a I.0 
(1) 0.9 a) -71)  

0.8 

01 

U) 
„
Q 0: No Damping 

0 

0 

 

0 02  

C) 

05 i.0 15 20 

0 
-J 

05 g 
04 Ili 111111 

0"0J0 

0•020 

Undamped Natural Period,T, sec. 

Fig. 8 Acceleration Spectra for Elastic Systems -- El Centro 
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Figure 8 - reprinted from reference V1 
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Fig. 9 Acceleration Spectra for ElastowPlastIc Systems with • 10 Percent Critical WIMPint •i• El Centro Earthquake 

Figure 9 • reprinted from reference Vl 
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FIG. 9.-RESPONSE OF FOUR-STORY UNDAMPED ELASTIC 
FRAME, EL CENTRO EARTHQUAKE 

Figure 10 - reprinted from reference - P1 
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FIG. 10.-RESPONSE OF FOUR-STORY ELASTIC-PLASTIC 
FRAME, EL CENTRO EARTHQUAKE 

Figure 11 - reprinted from reference P1 


